
Making Terraform Better
with the Morpheus Hybrid Cloud
Orchestration Platform
Integration Overview for
HashiCorp Terraform

Last Updated: September 2023

Copyright © 2023 Morpheus Data, LLC. All Rights Reserved All third-party
product and company names are property of their respective holders and
use does not imply any specific endorsement

www.morpheusdata.com 2

INTRODUCTION
Independently, Morpheus and Terraform can each provide benefits that help increase
efficiency and simplify automation across cloud environments. However, leveraging both
Terraform and Morpheus together will inherently provide more value by combining the
infrastructure-as-code capabilities of Terraform with the multi-cloud governance, workflow
automation, and policy engine within Morpheus. In this document, we will cover the
additional benefits one would gain by leveraging Morpheus and Terraform in combination.
We’ll touch on the ability to trigger Terraform files from Morpheus and how to leverage the
Terraform Provider for Morpheus. Before we jump in, let’s spend a few minutes on the pros
and cons of Terraform itself.

INFRASTRUCTURE-AS-CODE (IaC) USING TERRAFORM
Infrastructure-as-Code is the process of managing and provisioning infrastructure by
leveraging simple-to-read and -write definition files, (rather than physical hardware
configuration or interactive configuration tools) . The value of using Infrastructure-as-Code
includes speed of execution and automated delivery of infrastructure as well as a reduction of
risk associated with human error that can in turn lead to downtime. IaC can also be key in
enabling best practices in DevOps because developers become more involved in defining
configuration and ops teams get involved earlier in the development process. Another
enabler of DevOps is use of IaC to treat infrastructure resources of immutable so you can
quickly create and destroy then re-create a fresh instance as needed.

In the case of Terraform, these definition files let you declaratively define the underlying
infrastructure in template files (.tf) and manage the infrastructure’s state. Other IaC
languages include AWS CloudFormation as well as Azure Resource Manager (ARM)
templates.

Terraform is cloud-agnostic as it relies on open-source provided cloud and infrastructure
providers used in combination with the HashiCorp Configuration Language (HCL) IaC
templating language. Terraform has a lot of appeal for software developers and IT
infrastructure administrators because creating templates can be done quickly and with
relative ease. There is broad open-source community for Terraform, plus engagement from
vendors managing a network of Terraform providers for different infrastructure endpoints
(VMware, AWS, Azure, etc.) .

Terraform can be used to manage the state of infrastructure created with Terraform.
However, it will not detect changes in a virtual machine that have occurred because of
installing applications locally using a configuration management tool like Chef or Ansible, or
manual changes that happen once infrastructure is in use. It is effectively automating
‘infrastructure down’, while configuration management tools traditionally work ‘infrastructure
up’ to automate application configuration.

To sum it up, here are just some of the top reasons why developers and IT Infrastructure
administrators like Terraform:

www.morpheusdata.com 3

• Its perceived simplicity - it is like coding your infrastructure in English
• It leverages declarative Infrastructure-as-Code for speed
• It is cloud agnostic with a broad ecosystem
• It is an immutable approach to infrastructure

WHAT ARE SOME OF THE GAPS WITH OPENSOURCE TERRAFORM
AND HOW CAN MORPHEUS HELP TO BRIDGE THEM?

BRITTLE IN PRIVATE CLOUD ENVIRONMENTS: Terraform is simple when you
want to provision infrastructure using a single Terraform provider to abstract the interface into
a public cloud - let’s say to AWS, for example; you can write a Terraform file to deploy as
many resources as you would like along with associated networks and other abstractions,
and quickly deploy the declared infrastructure. But what happens when you need to interact
with on-premises infrastructure? You’ll need to mirror all the abstractions that public clouds
make invisible, which is why private clouds are traditionally so hard to actually deliver.

For example, one provider to deploy a server, another to go grab an IP from an IP Address
Management solution (like Infoblox) , and another to provision a load balancer (like F5) . This
scenario requires you to call and maintain multiple Terraform providers, which increases
complexity. What if, later, you choose to leverage a different IPAM solution, or a different load
balancer technology? With this change you must leverage different Terraform Providers and
your previous file(s) are no longer valid. This added complexity and re-work of multiple .tf
files introduces fragility and risk.

With Morpheus, you can leverage the platform’s dozens of built-in integrations with
common on-premises technologies, along with the Morpheus Terraform Provider, to
make private clouds as simple and straightforward as public clouds. In fact, with a
single Morpheus Terraform Provider, you can consolidate access to both private
and public cloud endpoints.

MISSING ROLE-BASED ACCESS CONTROL (RBAC): Control and Identity Access
Management is vital to properly scoping and governing the activities of self-service
consumers, especially in large Enterprise or Service Provider environments. RBAC is
available in the paid version of Terraform (Terraform Enterprise and Sentinel) , but this can
get expensive and only addresses Terraform - meaning you may still need to invest in other
tools such as Ansible Tower to manage RBAC for your other automation tools.

With Morpheus, you can leverage the platform’s multi-tenancy and fine-grained role-
based access control model to manage how users, groups, and roles can access

www.morpheusdata.com 4

and execute terraform. Simply integrate your enterprise identity provider (Active
Directory, Okta, SAML, etc.) and set policies accordingly.

These governance policies not only control Terraform, but they also span your
hypervisors, clouds, and automation tools - so you truly have a unified control
plane.

CHALLENGES BRIDGING INFRASTRUCTURE, APPS, AND ITSM: Terraform does a
good job at tracking infrastructure state, but what about application and environment state?
And how to you make sure your CMDB is updated and approvals are in place? Terraform
lacks integrations into CM and ITSM solutions, and therefore doesn’t address tracking
application changes, nor does it integrate into an organization's ITIL processes the way
many organizations need to operate at enterprise scale.

Morpheus integrates into all the popular configuration management tools (Ansible,
Puppet, Chef, and SaltStack) and can even enable the well governed mixing and
matching of automation task types. Morpheus also integrates deeply into ITSM tools
(ServiceNow, Cherwell, and Remedy). This allows Morpheus to be part of the ITIL
processes for approvals and CMDB updates, and hence involved in the overall
GitOps workflow.

FOCUSED ON INFRASTRUCTURE, NOT APPS: As noted earlier, Terraform is good at
deploying many infrastructure resources to a single cloud and managing the infrastructure
state, but what about applications? HashiCorp has embraced the notion of “Immutable
Infrastructure,” but at the end of the day it’s all about the application. If something needs to
be updated or fixed, new servers built from a common image (where the updated software is
baked in) are provisioned to replace the old ones.

This process can be functional for smaller teams or projects; however, at the enterprise level,
a pre-baked application image approach can fall apart. The high number of images and
software versions that need to be managed and maintained can become an operations
team’s nightmare.

On the other hand, Morpheus defines the application(s) to be provisioned at the
logical level of the service provisioning process, all the way down to policy-based
automation workflows that need to occur in the provisioning of an environment. This
enables Immutable Application Stacks - not just infrastructure. It enables Terraform
to do what it does well, but provides a simple hook into configuration management,
monitoring, logging, and other application centric tooling.

NO GRAPHICAL USER INTERFACE (GUI) : Terraform is, effectively, a command line tool.
There are different tools out there that provide a bolt-on UI to Terraform; however, if you want

www.morpheusdata.com 5

to use a HashiCorp UI you must move to Terraform Enterprise, which will provide a graphical
user interface at a significant cost premium.

Morpheus provides a robust API for developers, so it certainly checks all the Dev
boxes as far as full fidelity API/CLI goes. However, it also appeals to IT
Operations and other users that may be more comfortable in a feature-rich GUI or
interface from ITSM. Automation teams can focus on building the IaC patterns
needed for the business but can then use Morpheus to turn those into easily
consumable self-service catalog items to be executed by those without deep
automation skills.

MORPHEUS AND TERRAFROM INTEGRATION TYPES
Morpheus has a few ways to interact with Terraform based on the desired outcome. Terraform
blueprints, Terraform instance types, and the Morpheus Terraform provider.

1. Terraform Blueprints

The Terraform blueprint type allows you to bring your Terraform directly into Morpheus for
immediate consumption. You can create blueprints in Morpheus that include Terraform code
pasted directly into the onboard text editor, pull from Git repositories full of Terraform code, or
even utilize modular Terraform files in a special Morpheus construct called a spec template,
which allows for reuse of micro-templated Terraform code across the platform. Following are a
few examples of how this can be utilized:

www.morpheusdata.com 6

Figure 1: Terraform Code in Text Editor

In Figure 1, you can see the Terraform code is pasted directly into the config pane text editor. This
is great for quick, down-and-dirty testing of a piece of Terraform code.

Limitations of this example are that you can only have a single Terraform file pasted into the
config. This means large applications become extremely unwieldy and hard to maintain.

www.morpheusdata.com 7

Figure 2: Terraform Blueprint from Git

In Figure 2, you can see that the Terraform code is being provided via a Git repo. In the preview
pane, you can see the files and folders that are readable from the working path directory provided.
What you cannot see in the screenshot is that Morpheus also shows the providers utilized, as well
as the modules referenced in the Terraform code.

www.morpheusdata.com 8

Figure 3: Terraform Blueprint from Spec

In Figure 3: You can see that there are three (3) Morpheus spec templates utilized to
create the blueprint. The main and output TF files are directly tied to the deployment that I
would like to create. The provider TF is its own spec template so that I can reuse it for
other Terraform deployments that would require said provider block.

Each of these methodologies provide different avenues to utilize already existing
Terraform code to create the blueprint based on the configuration of your application
deployments. The one drawback to any of these deployment types is that they lack a
direct tie into the power of the Morpheus provisioning automation engine.

www.morpheusdata.com 9

2. Terraform Instance Types

Terraform Instance Types take Terraform out of the monolithic blueprint construct and allow you
to create a Morpheus instance of Terraform deployed code. This Instance Type can have
multiple layouts, each representing a different configuration of a similar construct. Think RDS
deployments on different sizes, for example. Terraform spec templates, either created locally or
pulled in from Git, are used to stitch together the Terraform instance type. If you recall from the
spec template powered blueprint, each Terraform file is its own spec template. This same thing
applies to Instance Types.

Figure 4: Instance Type Layout

www.morpheusdata.com 10

In Figure 4 you can see that the same provider spec template is being utilized from the blueprint.
This is one of the benefits of the spec template methodology.

You will also notice that you have the option to select a workflow for this layout. Instance Types
grant the ability to utilize the lifecycle automation capabilities of Morpheus alongside your
Terraform code. This is very useful for taking actions after resource deployment to perform
application configuration. It is one of the stronger reasons for utilizing Instance Types over
blueprints.

For example, this capability is currently being used to deploy classroom training environments for
Morpheus’ own training classes. Terraform is utilized to spin up a VPC in AWS with networks and
security groups as required, EC2 instances for the class (one of which gets Morpheus installed on
it) , and an IAM user with secret and access keys and all the permissions Morpheus needs to
manage the account. All of this is spun up per student to grant a whole environment to them.
Once the Terraform deployment is complete, a Morpheus provisioning workflow takes over and
performs configuration on the Morpheus appliance to do the initial setup and configuration utilizing
Python to make API calls to the appliance. An email is then sent to the instructor who initiated the
classroom build with all the information about every student’s environment for them to
disseminate to the class.

One of the downsides of utilizing the Instance Type is that you cannot rely on local modules or
files, as each spec template is cloned into its own workspace directory to run the Terraform plan,
apply, and destroy commands from.

How to Decide Between Instance Types and Blueprints

This is going to be highly dependent on your current methodology for utilizing Terraform, your
tolerance for code changes, and your desire to utilize the built-in functionalities of Morpheus with
your Terraform deployments.

If you have large Terraform deployments with local file references or local modules, then you will
most likely want to stick with the Git-based blueprint option.

If you are calling a lot of remote modules and need a place to run a main.tf that utilizes those
remote modules, or you want to utilize the provisioning lifecycle capabilities of Morpheus
Provisioning Workflows, then Tnstance Types are the way to go.

3.Terraform Provider for Morpheus

The Terraform provider for the Morpheus Data appliance can be found on GitHub.
https://github.com/gomorpheus/terraform-provider-morpheus

There’s a distinct advantage to leveraging the Morpheus provider for on-premises
infrastructure because it can become a single provider to offload the responsibility of
provisioning and orchestrating heterogeneous infrastructure and managing application state.
Morpheus integrates out of the box with 80+ tools and 20+ clouds. By writing Terraform files

https://github.com/gomorpheus/terraform-provider-morpheus

www.morpheusdata.com 11

to call Morpheus, you can let the CMP do all the heavy lifting and reduce the brittleness of
IaC deployments.

There are several other benefits that Morpheus brings to the equation. Let’s touch on some
of them.

MORPHEUS AND TERRAFORM ARE BETTER TOGETHER

Enhance your overall security posture with Morpheus RBAC
As noted earlier, Terraform is limited when it comes to governance policy and RBAC on its
own. If you have access to Terraform, you can plan/apply .tf files but there is no way for IT
teams to control access to those .tf files or audit the result of execution. By integrating
Terraform with Morpheus, you can take advantage of the fine-grained governance and RBAC
available in Morpheus to extend those capabilities when providing access to Terraform files.
Morpheus governance and control goes well beyond just Terraform. Because Morpheus is a
Multi-Cloud Provisioning, Automation, and Orchestration platform, Morpheus takes that
governance to Private and Public Clouds alike, as well as any additional integrated
technologies, like configuration management, ITSM, logging, and backup systems. You can
find all the integrations documented here:
https://docs.morpheusdata.com/en/latest/integration_guides/integration_guides.
html#integration-guide

Morpheus Cypher Service for secure secret management
Morpheus has a built-in service called Cypher. It’s a secure Key/Value store. Cypher allows
the storage of secret data (like credentials or variable sets) in a highly encrypted way for
future retrieval. When leveraging Morpheus and Terraform, these variables can be
seamlessly passed to Terraform. Secrets and variables only need be maintained and
managed in one place.

https://docs.morpheusdata.com/en/latest/integration_guides/integration_guides.html#integration-guide
https://docs.morpheusdata.com/en/latest/integration_guides/integration_guides.html#integration-guide

www.morpheusdata.com 12

If you recall back to Figure 4, you may have noticed the names of the spec templates being
utilized:
Private Module: main
Private Module: output
This particular instance type layout is making a call to a private repository in GitLab as the
source for a module. The module is very basic and just takes some inputs, creates some null
resources, and outputs the inputs back for you. The main for this spec template is simply
calling that module and passing some variables to it. The keen-eyed will notice that there is a
sneaky bit of code smooshed into the source url.
<%=cypher.read('secret/gitlab_tf_token') %>
This little snippet takes an access token from GitLab stored securely in Morpheus Cypher as
gitlab_tf_token and injects it into the url for the module
module "primitive_vars" {

 source =

"git::https://oauth2:<%=cypher.read('secret/gitlab_tf_token')%>@gitlab.com/**redacted**/private_terraform_modules.git//random/primiti

ve_vars"

 string = "This is a string"

 number = 42

 bool = true

}

www.morpheusdata.com 13

Enable Execution History and Auditing of all Terraform actions
From Morpheus, whether you provision a Terraform blueprint or make any changes
and plan/apply again, the output is available in the History tab of that instance.

HOW TO USE TERRAFORM WITH MORPHEUS
Let’s go ahead and discuss the setup required for this integration, and then the interaction
between Terraform and Morpheus. As mentioned earlier there are multiple ways to integrate
and leverage Terraform with Morpheus. By creating Application blueprints that leverage
Terraform files, or by creating instance types that utilize spec templates, the Terraform
Provider for Morpheus allows you to run configurations and deployments against the
Morpheus platform utilizing Terraform HCL.

Terraform Installation
The first step in taking advantage of this integration is to install Terraform on the
Morpheus appliance. The great news is that Morpheus can automatically install Terraform
locally based on a few different options. Firstly, you will need to set the Terraform Runtime to
“auto” under Administration -> Settings -> Provisioning. You can also set your default
Terraform version here. This is the version of Terraform that will be utilized by any
deployment that does not specify another version to run.

www.morpheusdata.com 14

Figure 5: Terraform Auto Runtime

In a spec template, you have the option to specify the version of Terraform. (See Figure 6) If you
do not specify a version, then the default version from Administration -> Settings -> Provisioning
will be used.

Figure 6: Terraform Version in Spec Template

NOTE: Be sure not to mix and match Terraform versions in you spec templates on a single
instance type or blueprint, as this can cause issues within the system.

You can also manually install and configure Terraform on the Morpheus appliance if you
wish. More details on the manual installation are available here:
https://docs.morpheusdata.com/en/latest/integration_guides/Automation/terraf orm.html

GitHub/Git Repository Setup
To use .tf files from a Git repo, GitHub integration needs to be configured in Administration -
Integrations. If one is not configured .tf or .tf.json files can be manually added to the
Terraform application blueprints.

https://docs.morpheusdata.com/en/latest/integration_guides/Automation/terraform.html
https://docs.morpheusdata.com/en/latest/integration_guides/Automation/terraform.html

www.morpheusdata.com 15

Now that the setup is complete, we can leverage Terraform.

SUMMARY
We’ve discussed what Terraform is, and we’ve touched on the gaps that it has (especially in
a heterogeneous private cloud), and when provisioning multi-cloud infrastructure and
applications. We’ve noted the benefits of using Morpheus and Terraform together, and how
Morpheus helps close the Terraform gaps. We’ve also highlighted how easy it is to setup
this integration to take advantage of these benefits. We also discussed the challenges that
Terraform has with private cloud, and by far the best way to leverage Terraform to provision
to private cloud is by using the Terraform Provider for Morpheus. You only write to one
provider, and Morpheus takes care of provisioning and state management of all the private
cloud components, solutions, and constructs. Let Morpheus be the arbiter of all things
private cloud, and multi-cloud! One final point I’d like to make is that any organization looking
to procure Terraform Enterprise can save costs by leveraging Morpheus and open source
Terraform.

To get started with Morpheus today, please visit www.morpheusdata.com Request a demo of
Morpheus at www.morpheusdata.com/demo/

http://www.morpheusdata.com/
http://www.morpheusdata.com/demo/

